Как работает фотокамера. Как работает цифровой фотоаппарат. Несколько слов о вспышке

Современные фотоаппараты все делают сами, чтобы получить снимок, пользователю достаточно лишь нажать на одну кнопку. Но ведь все равно интересно: по какому же волшебству картинка попадает в камеру? Мы постараемся объяснить основные принципы работы цифровых камер.

Основные части

В основном устройство цифровой камеры повторяет конструкцию аналоговой. Главное их различие в светочувствительном элементе, на котором формируется изображение: в аналоговых фотоаппаратах это пленка, в цифровых – матрица. Свет через объектив попадает на матрицу, где формируется картинка, которая затем записывается в память. Теперь разберем эти процессы подробнее.

Состоит камера из двух основных частей – корпуса и объектива. В корпусе находятся матрица, затвор (механический или электронный, а иногда и тот и другой сразу), процессор и органы управления. Объектив, съемный или жестковстроенный, состоит из группы линз, размещенных в пластиковом или металлическом корпусе.

Где получается картинка

Матрица состоит из множества светочувствительных ячеек – пикселов. Каждая ячейка при попадании на нее света вырабатывает электрический сигнал, пропорциональный интенсивности светового потока. Поскольку используется информация только о яркости света, картинка получается черно-белой, а чтобы она была цветной, приходится прибегать к разным хитростям. Ячейки покрывают цветными фильтрами – в большинстве матриц каждый пиксел покрыт красным, синим или зеленым фильтром (только одним!), в соответствии с известной цветовой схемой RGB (red-green-blue). Почему именно эти цвета? Потому что эти цвета – основные, а все остальные получаются путем их смешения и уменьшения или увеличения их насыщенности.

На матрице фильтры располагаются группами по четыре, так что на два зеленых приходится по одному синему и красному. Так делается потому, что человеческий глаз наиболее чувствителен именно к зеленому цвету. Световые лучи разного спектра имеют разную длину волн, поэтому фильтр пропускает в ячейку лучи только своего цвета. Полученная картинка состоит только из пикселов красного, синего и зеленого цвета – именно в таком виде записываются файлы формата RAW (сырой формат). Для записи файлов JPEG и TIFF процессор камеры анализирует цветовые значения соседних ячеек и рассчитывает цвет пикселов. Этот процесс обработки называется цветовой интерполяцией, и он исключительно важен для получения качественных фотографий.

Такое расположение фильтров на ячейках матрицы называется шаблоном Байера
Основных типов матриц два, и они различаются способом считывания информации с сенсора. В матрицах типа CCD (ПЗС) информация считывается с ячеек последовательно, поэтому время обработки файла может занять довольно много времени. Хотя такие сенсоры «задумчивы», они относительно дешевы и к тому же уровень шума на полученных с их помощью снимках меньше.

Матрица типа ПЗС

В матрицах типа CMOS (КМОП) информация считывается индивидуально с каждой ячейки. Каждый пиксел обозначен координатами, что позволяет использовать матрицу для экспозамера и автофокусировки.

КМОП-матрица

Описанные типы матриц – однослойные, но есть еще и трехслойные, где каждая ячейка воспринимает одновременно три цвета, различая разноокрашенные цветовые потоки по длине волн.

Трехслойная матрица

Выше уже был упомянут процессор камеры – он отвечает за все процессы, в результате которых получается картинка. Процессор определяет параметры экспозиции, решает, какие параметры нужно применить в данной ситуации. От процессора и программного обеспечения камеры зависят качество фотографий и скорость работы камеры.

У smart-microcam.ru принцип работы несколько иной, но не будем отходить от нашей статьи.

По щелчку затвора

Затвор отмеряет время, в течение которого свет воздействует на сенсор (выдержку). В подавляющем большинстве случаев это время измеряется долями секунды – что называется, и моргнуть не успеешь. В цифровых зеркальных камерах, как и в пленочных, затвор представляет собой две непрозрачные шторки, закрывающих сенсор. Из-за этих шторок в цифровых зеркалках невозможно визирование по дисплею – ведь матрица закрыта и не может передавать изображение на дисплей.

В компактных камерах матрица не закрыта затвором, и поэтому можно компоновать кадр по дисплею

Когда кнопка спуска нажата, шторки приводятся в движение пружинам или электромагнитами, открывается доступ свету, и на сенсоре формируется изображение – так работает механический затвор. Но в цифровых камерах бывают еще и электронные затворы – они используются в компактных фотоаппаратах. Электронный затвор, в отличие от механического, нельзя пощупать руками, он, в общем-то, виртуален. Матрица компактных камер всегда открыта (именно потому и можно компоновать кадр, глядя на дисплей, а не в видоискатель), когда же нажимается кнопка спуска, кадр экспонируется в течение указанного времени выдержки, а затем записывается в память. Благодаря тому, что у электронных затворов нет шторок, выдержки у них могут быть ультракороткими.

Наведем фокус

Как уже говорилось выше, часто для автофокусировки используется сама матрица. Вообще же, автофокусировка бывает дву типов – активная и пассивная.

Для активной автофокусировки камере нужны передатчик и приемник, работающие в инфракрасной области или с ультразвуком. Ультразвуковая система измеряет расстояние до объекта по методу эхолокации отраженного сигнала. Пассивная фокусировка осуществляется по методу оценки контраста. В некоторых профессиональных камерах сочетаются оба типа фокусировки.

В принципе, для фокусировки может использоваться вся площадь матрицы, и это позволяет производителям размещать на ней десятки фокусировочных зон, а также использовать «плавающую» точку фокуса, которую пользователь сам может разместить где ему угодно.

Борьба с искажениями

Именно объектив формирует на матрице изображение. Объектив состоит из нескольких линз – из трех и более. Одна линза не может создать совершенное изображение – по краям оно будет искажаться (это называется аберрациями). Грубо говоря, пучок света должен идти прямо на сенсор, не рассеиваясь по пути. В какой-то мере этому способствует диафрагма – круглая пластинка с дыркой посередине, состоящая из нескольких лепестков. Но сильно закрывать диафрагму нельзя – из-за этого уменьшается количество света, попадающее на сенсор (что и используется при определении нужной экспозиции). Если же собрать последовательно несколько линз с различными характеристиками, искажения, даваемые ими вместе, будут гораздо меньше, чем аберрации каждой из них по отдельности. Чем больше линз – тем меньше аберрации, и тем меньше света попадает на сенсор. Ведь стекло, каким бы прозрачным оно нам ни казалось, не пропускает весь свет – какая-то часть рассеивается, что-то отражается. Чтобы линзы пропускали как можно больше света, на них наносят специальное просветляющее напыление. Если посмотреть на объектив камеры, будет видно, что поверхность линзы переливается радугой – это и есть просветляющее напыление.

Линзы располагаются внутри объектива примерно таким образом

Одна из характеристик объектива – светосила, значение максимально открытой диафрагмы. Она указывается на объективе, например, так: 28/2, где 28 – фокусное расстояние, а 2 – светосила. Для зум-объектива маркировка выглядит так: 14-45/3,5-5,8. Два значения светосилы указываются для зумов, поскольку в широкоугольном и в телеположении у него разные минимальные значения диафрагмы. То есть, на разных фокусных расстояниях светосила будет разной.

Фокусное расстояние, которое указывают на всех объективах – это расстояние от передней линзы до светоприемника – в данном случае матрицы. От фокусного расстояния зависит угол обзора объектива и его, так сказать, дальнобойность, то есть как далеко он «видит». Широкоугольные объективы отдаляют изображение относительно нашего обычного видения, а телеобъективы – приближают, и у них маленький угол обзора.

Угол обзора объектива зависит не только от его фокусного расстояния, но и от диагонали светоприемника. Для 35 мм пленочных камер нормальным (то есть примерно соответствующим углу обзора человеческого глаза) считается объектив с фокусным расстоянием 50 мм. Объективы с меньшим фокусным расстоянием – широкоугольники, с большим – телевики.

Левая часть нижней надписи на объективе – фокусное расстояние зума, правая часть – светосила

Здесь и кроется проблема, из-за которой рядом с фокусным расстоянием объектива цифровика часто указывают его эквивалент для 35 мм. Диагональ матрицы меньше диагонали 35 мм кадра, и поэтому приходится «переводить» цифры в более привычный эквивалент. Из-за этого же увеличения фокусного расстояния в зеркальных камерах с «пленочными» объективами становится почти невозможна широкоугольная съемка. Объектив с фокусным расстоянием 18 мм для пленочной камеры – суперширокоугольный, но для цифрового фотоаппарата его эквивалентное фокусное расстояние будет около 30 мм, а то и больше. Что касается телеобъективов, то увеличение их «дальнобойности» только на руку фотографам, ведь обычный объектив в фокусным расстоянием, скажем, 400 мм, стоит довольно дорого.

Видоискатель

В пленочных камерах компоновать кадр можно только пользуясь видоискателем. Цифровые же позволяют вовсе забыть о нем, поскольку в большинстве моделей для этого удобнее использовать дисплей. В некоторых очень компактных камерах видоискателя вовсе нет – просто из-за того, что нет для него места.

Самое важное в видоискателе – что через него можно увидеть. Например, зеркальные камеры так называются как раз из-за особенностей конструкции видоискателя. Изображение через объектив посредством системы зеркал передается в видоискатель, и таким образом фотограф видит реальную площадь кадра. Во время съемки, когда открывается затвор, загораживающее его зеркало поднимается и пропускает свет на чувствительный сенсор. Такие конструкции, конечно, отлично справляются со своими задачами, но занимают довольно много места и потому совершенно неприменимы в компактных камерах.

Вот так изображение через систему зеркал попадает в видоискатель зеркальной камеры

В компактных камерах применяют оптические видоискатели реального видения. Это, грубо говоря, сквозное отверстие в корпусе камеры. Такой видоискатель не занимает много места, но обзор его не соответствует тому, что «видит» объектив.

Еще есть псевдозеркальные камеры с электронными видоискателями. В таких видоискателях установлен маленьких дисплей, изображение на который передается непосредственно с матрицы – точно так же, как и на внешний дисплей.

Вспышка

Вспышка, импульсный источник света, используется, как известно, для подсветки там, где основного освещения недостаточно. Встроенные вспышки обычно не очень мощные, но их импульса достаточно, чтобы осветить передний план. На полупрофессиональных и профессиональных камерах есть еще контакт для подключения гораздо более мощной внешней вспышки. Контакт этот называется «горячий башмак».

Что нужно знать о фотоаппарате для того, чтобы меньше совершать ошибок и чаще радоваться результатам или ключевой вопрос прогресса и его влияние на рост профессионального мастерства.

Еще несколько лет назад профессионалы снисходительно улыбались, слыша разговоры о цифровых фотокамерах. Сейчас всё изменилось, и цифровые зеркальные фотоаппараты перестали вызывать удивление и насмешки в профессиональных кругах. Буквально взрывной рост «цифровизации» фототехники затормозился, приблизившись к границе технологических и физических возможностей. Что еще важнее - возможности цифровой техники приблизились к границе разумных потребностей фотолюбителя. Функциональные и качественные характеристики цифровых фотокамер разных производителей сблизились вплотную и, наконец, цены стабилизировались в приемлемом потребительском коридоре. Что особенно важно, качество изображения формируемого профессиональными и некоторыми любительскими цифровыми аппаратами не уступает, а во многих случаях и превосходит плёночное. Да, плёнка жива и, возможно, будет жить еще долго, но прогресс остановить невозможно. Согласитесь, побеждает та технология, которая удобнее и дешевле. Поэтому, изучая фотоаппарат как основной инструмент фотографа, мы будем говорить, прежде всего, о цифровых фотокамерах. Каким фотоаппаратом снимать - плёночным, или цифровым каждый решает сам? Какую модель выбрать, с какими характеристиками, какого производителя тоже дело вкуса и личных предпочтений? Для эффективного обучения мастерству фотографии несущественно фотокамерой какого производителя вы пользуетесь.

Но! Хочу обратить ваше внимание, уважаемые коллеги - намного удобнее и дешевле обучаться, имея цифровой фотоаппарат, и уж совсем жизненно необходимо, чтобы ваша камера имела возможность съемки в полуавтоматических и ручном режимах. Почему эти тезисы верны, вы поймете в процессе знакомства с материалом данной лекции.

Кратко об устройстве фотоаппарата и влиянии конструктивных элементов на результат.

1. ОБЪЕКТИВ

Объектив - устройство создающее изображение на светорегистрирующей плоскости.

Достаточно подробно мы уже рассмотрели этот вопрос в лекции, посвященной объективам, поэтому напомню и уточню только несколько важных пунктов:

разрешающая способность - важнейшая характеристика, определяющая максимально возможную четкость и резкость формируемого изображения. Зависит от качества материала, из которого выполнены линзы объектива, качества обработки поверхностей и точности самой оптической схемы. Нетрудно догадаться, что чем объектив лучше, тем он дороже.

светосила - упрощенно это отношение количества света пропущенного объективом в светорегистрирующую плоскость, к количеству света отраженного от фотографируемого объекта (в сторону объектива, естественно). Характеризуется светосила минимальным значением диафрагмы f (обратная величина, см. лекцию про объективы), лучшие объективы имеют значение f/1.2, у большинства объективов минимальное значение f/4.

аберрации (они же вносимые искажения) - чаще всего, выделяют две основных группы искажений влияющих на изображение:

Схема хроматической аберрации (1) и её уменьшение с помощью ахроматической линзы (2)

- геометрические аберрации - дисторсии, сферическая аберрация, кома и астигматизм. Самая заметная - дисторсия - искажение изображения прямых линий, зависит от взаиморасположения диафрагмы и линзы. В большинстве оптических систем удается скомпенсировать эти искажения и свести их практически к нулю.

Световой поток на рисунке, распространяется слева направо.

Результат в плоскости кадра:


Подушкообразная дисторсия


Бочкообразная дисторсия


Отсутствие дисторсии

Про сферическую аберрацию, кому и астигматизм, а также про дифракционную аберрацию, особенно пытливые студенты могут прочитать в справочной литературе.

Виньетирование - это не столько характеристика объектива, сколько эффект, связанный с объективом - затемнение изображения по краям кадра возникающее, частично, вследствие ограничения светового пучка диафрагмой, но наиболее сильно проявляющееся при использовании нескольких светофильтров на внешней оправе объектива.

автофокус - это уже характеристика системы фотоаппарат-объектив. Скорость и точность фокусировки в объективах с автофокусом зависит от используемого типа привода и качества системы автофокусировки в целом. Думаю, не нужно объяснять, на что и как это влияет. Сегодня, чаще всего используют ультразвуковой привод, позволяющий сделать этот процесс очень быстрым, плавным, бесшумным и точным. Трудности, как правило, возникают в случае низкой освещенности, для решения этой проблемы в некоторых фотоаппаратах используют систему подсветки автофокуса. При работе с фотоаппаратом без подсветки автофокуса, зачастую можно подсвечивать обычной лазерной указкой. В некоторых случаях эффективнее использовать ручной автофокус, если он конструктивно предусмотрен, конечно.
От качества объектива, как нетрудно догадаться, качество изображения зависит в первую очередь. Такие характеристики объектива как фокусное расстояние и ГРИП можно рассматривать как переменные или производные от других характеристик. Об этом мы подробно говорили в лекции посвященной объективам.

2. МАТРИЦА

Матрица - электронное устройство, расположенное в той самой светорегистрирующей плоскости, в которой объектив формирует изображение и, фактически регистрирующее это самое изображение.

Обычно размышления на тему цифровой фотокамеры начинаются с оценки разрешающей способности матрицы и других ее характеристик. Во многом это правильно. Упрощенно, матрица, она же сенсор, это аналого-цифровой преобразователь (АЦП преобразует аналоговый сигнал - количество света, в цифровой - электрический импульс) на основе кремниевого кристалла в котором сформирована плоскость (матрица) фотодиодов каждый из которых и есть пиксел. Все вместе эти элементы преобразуют световой поток падающий на плоскость в поток данных в виде совокупности электрических сигналов. Матрицы различаются по типу и размеру (подробно об этом в статье Салавата Фидаева). Не вдаваясь в технические подробности, можно отметить, что для получения фотоотпечатков удовлетворительного качества традиционного бытового формата 10×15 см достаточно 2-мегапиксельной матрицы (два миллиона светочувствительных элементов). Понятно, что тем, кто учится фото-мастерству, бытовой формат не интересен, а значит нужно более высокое разрешение. К счастью, большинство цифровых фотокамер уже давно перешагнули за пятимегапиксельный рубеж. Почему пять мегапикселей имели такое принципиальное значение? Потому что, в профессиональной фотографии, самый распространённый формат - это 20×30 см, размер стандартного листа (А4), и пяти мегапикселей как раз достаточно для получения качественного изображения такого формата. Итак, по пунктам.

разрешение - количество точек из которых формируется изображение. В общем виде, надеюсь, интуитивно понятная характеристика - чем разрешение выше, тем лучше.

динамический диапазон - фактически, качество точек - очень важный параметр матрицы, который характеризует способность аналого-цифрового преобразователя (сенсора), фиксировать и детализировать световую информацию в диапазоне от минимального количества света (темная часть изображения) до максимального (светлая часть изображения). Иначе говоря, способность качественно зафиксировать детали изображения одновременно в самой светлой и в самой темной частях снимка. Естественно, чем больше динамический диапазон, тем точнее и мягче изображение. Динамический диапазон определяется битностью представления данных. Для понимания того, что такое битность, приведу упрощенный пример. Один бит - одна позиция в двоичной системе счисления (использует компьютер), которая может принимать значения 0 или 1, то есть либо черный, либо белый. Два бита - две позиции по два значения - 2×2=4 всего четыре: черный, темно серый, светло серый, белый. Три бита - 2×2х2=8 - восемь уровней (ступеней) детализации от черного до белого; четыре бита - 2×2х2×2=16 - соответственно, шестнадцать уровней. И так далее. На сегодняшний день в большинстве систем фиксации, преобразования и отображения изображений используется восьмибитный диапазон, то есть 2 в восьмой степени, что соответствует 256 ступеням от абсолютно белого до совершенно черного. Это, конечно, существенно меньше, чем диапазон человеческого глаза, но для решения фото-задач в большинстве случаев достаточно. Подробнее мы это обсуждаем в лекции «Свет и освещение в фотографии».

физический размер матрицы и кроп-фактор - площадь которую занимают пикселы в столь важной для нас плоскости и пропорция отношения к стандартному размеру 24×36. Что здесь важно понять?

- размер пикселя - как нетрудно догадаться, если есть маленькая восьмимегапиксельная матрица и существенно большая, скажем, шестимегапиксельная, значит размеры пикселей у них отличаются. Влияет ли это на что-нибудь и как именно? Чем больше размер ячеек (фотодиодов) тем «глубже» и «чище» получается фотоизображение. Это обусловлено тем, что во-первых. светочувствительность пикселя и его точность как АЦП пропорциональна его площади и, во-вторых чем пиксели крупнее, тем меньше влияние тепловых шумов, неизбежно возникающих при работе и разогреве матрицы. Поэтому маленькие, много-мегапиксельные матрицы, чаще всего имитируют 8-битный диапазон, существенно экстраполируя зашумленные данные. Как вы понимаете, нет ничего удивительного в том, что фотографии, сделанные «цифромыльницами» с крошечными восьмимегапиксельными матрицами, такие шумные и нечёткие. Кроме того, такие матрицы гораздо чувствительнее к ошибкам экспозиции. Минимальная недодержка ведет к повышенному уровню шума в тенях, а при небольшой передержке, детали в светах «выжигаются».

- кроп-фактор или нет худа без добра . Кроп-фактор всего лишь, показывает насколько матрица по площади меньше стандартного узкопленочного формата (см. статью Салавата Фидаева). Что здесь важно понимать? Во-первых, использование малой светорегистрирующей площади позволяет делать светосильные объективы с большими фокусными расстояниями весьма небольшого размера. Эта возможность, в полной мере используется в цифрокомпактах и фотокамерах просьюмерского формата с суперзумами. Во-вторых, в цифрозеркалках со стандартной оптикой периферийная часть изображения «обрезается», а именно там, как вы помните основные искажения.

Еще есть такое понятие как тип матрицы, но в эти технологический дебри мы пока не будем углубляться. В качестве резюме хочется сказать, если технологический прорыв позволит создать достаточно маленькую десятимегапиксельную «холодную» (без тепловых шумов) матрицу с реальным динамическим диапазоном больше двенадцати, то фотоаппарат профессионального качества легко разместится в любом телефоне. Вопрос в том возможно ли это, когда ожидать такого чуда и будет ли это выгодно фотографической промышленности?

3. ПРОЦЕССОР

Процессор - устройство, преобразующее поток данных в изображение и управляющее всей системой.

Что такое процессор, сегодня, в общих чертах, представляет каждый. Что нужно знать фотографу о процессоре своего фотоаппарата? В общем, ничего особенного - это мозг фотоаппарата, который участвует в определении экспозиции, при необходимости оптимизируя экспопару (в полуавтоматических режимах и в сюжетных программах) занимается фокусировкой, в случае надобности распознавая лица в кадре и показывая, что именно он распознал. Кроме того, разбирается с чувствительностью, обеспечивает корректную работу органов управления - превращает указания фотографа в действующие параметры работы всей системы под названием цифровая фотокамера. Если темно, включает подсветку автофокуса и управляет вспышкой. И, наконец, самое главное - создает изображение из того потока безликих данных, который получает от матрицы. Ну а потом, конечно, преобразует изображение в указанный формат, с заданными параметрами сжатия в нужном цветовом пространстве. Ну и еще записывает снимок на карту памяти и выводит изображение на монитор. И наконец выходит в режим готовности к новому снимку. Да, совсем забыл, диафрагмой и выдержкой также, как и затвором, тоже управляет процессор, честно выполняя указания фотографа. Кстати, может и самостоятельно фотографировать, достаточно только поручить. Процессоры все разные и у них, бывают недостатки - некоторые долго соображают, другие мудрят с фокусировкой, третьи регулярно ошибаются в сложных световых условиях, а иные плохо справляются и с простым светом. Но самые большие недостатки любого процессора это неспособность выбрать место/время съемки и неумение выстроить кадр. Так что, коллеги, приходится фотографу быть умнее процессора и судя по всему это надолго, поскольку фотография процесс творческий.

Дополнение или еще раз спасибо процессору.

Часто вы задумываетесь над тем, что световой поток в помещении с лампами и свет на улице в солнечный день, имеют разную природу и состав - имеют разную «цветовую температуру». Те, кто снимал на пленку, наверняка получив отпечатки, удивлялись, почему с одной и той же пленки одни фотографии нормальные, другие в синеву, а третьи сильно желтят. Для правильной цветопередачи в разном освещении, выпускаются и используются разные пленки. В отличии от плёнки, процессор цифрового фотоаппарата может настраиваться оперативно на изменение спектрального состава светового потока, используя белый цвет, как стандарт, и обеспечивает естественную цветопередачу в самых разных условиях - это называется баланс белого. Он может подстраиваться автоматически, может быть выставлен принудительно по типу освещения: дневной свет, облачно, лампы накаливания, лампы дневного света и может выставляться вручную или настраиваться по белому листу. Подробнее о балансе белого и цветовой температуре в лекции «Свет и освещение в фотографии».

4. ДИСПЛЕЙ

Дисплей, главный подсказчик, учитель и... обманщик

Дисплей, он же монитор, не нуждается в долгом представлении, это экранчик на котором виден получившийся после съемки кадр. Он же позволяет заблаговременно видеть подобие того, что должно получиться после нажатия на спусковую кнопку и вносить необходимые поправки. Большинство цифровых зеркальных аппаратов, правда, не дают возможности наблюдения через дисплей, но позволяют просматривать изображение немедленно после экспозиции. Возможность увидеть результат в процессе фотосъемки, отбраковать неудачные кадры, переснять - для многих самая важная и, как нетрудно догадаться, для нас весьма учебно-методическая. Совершенно очевидно, что дисплей может иметь разный размер, разрешающую способность и яркость. Эти параметры не нуждаются в детальном описании в силу очевидности. Очень важно, что почти все современные камеры позволяют вывести на дисплей гистограмму, не нужно пренебрегать этой возможностью, она спасает от многих ошибок и в экспозиции и в построении кадра. Некоторые модели фотоаппаратов оснащаются поворотными или вращающимися дисплеями, что заметно повышает удобство работы - например можно точно кадрировать (прицеливаться) при съемке на вытянутых руках над головой, или снимать с уровня земли. Не возникло вопроса, почему дисплей, при всех его плюсах - обманщик? Думаю, нет, но на всякий случай поясню: в силу малого размера дисплей оставляет нашему сознанию слишком много места для игры воображения. Поэтому очень часто кадр, казавшийся на дисплее гениальным, на большом экране оказывается безнадежным.

5. ЭКСПОСИСТЕМА

Экспосистема - вполне интеллектуальная и весьма непростая система определения условий освещенности и баланса значений экспопары.

Я не буду вам рассказывать, как работает TTL-замер при полностью открытой диафрагме с использованием много-зонного кремниевого фотоэлемента о том, какие экспонометрические системы сегодня наиболее распространены или о том, в чем разница замеров падающего и отраженного света. Главное, что вы должны понимать это то, какие способы измерений принципиально используются в фотоаппаратах и как это влияет на фотосъемку.

Экспозамер . Встроенный экспонометр современного фотоаппарата может оценивать количество света отраженного от области съемки, как правило, несколькими способами. В разных моделях, разных производителей названия режимов и технология замеров могут довольно сильно различаться, но принцип везде один. Есть два базовых режима - точечный и интегральный. В первом случае оценивается освещенность небольшой точки, совпадающей, как правило, с точкой фокусировки (или несколькими точками), во втором - усредняется освещенность всего кадра или значительной его площади. Все остальные режимы будут вариациями между этими полярными случаями. Например: оценочный замер сопряженный с любой точкой автофокусировки, частичный замер 10% площади в центре кадра, центральный точечный замер 3-4% площади в центре кадра, центрально-взвешенный интегральный замер, интегральный замер с приоритетом зон в которых система распознала лица... Что из этого следует вы уже знаете или, наверняка, догадываетесь. Если вы фотографируете блондинку в темной одежде на темном фоне, а экспозамер производится по всей площади кадра, то получится отлично проработанный костюмчик с белым пятном вместо лица. Конечно у пятна, скорее всего, прорисуются брови, глаза и губы, но выдать такой портрет за высокий ключ на темном фоне будет непросто. Отсюда вывод - режим экспозамера нужно подбирать в соответствии со светотеневым характером кадра площадью и освещенностью его смысловых центров. Итак, вы определили и установили подходящий режим, теперь процессор знает, как правильно оценить общее количество света и, связав его с чувствительностью, рассчитать значение экспопары.

Экспопара - пара двух параметров: выдержки и диафрагмы. При помощи экспопары выставляется экспозиция. Очевидно, что одной и той же экспозиции соответствует довольно много экспопар, например 1/30 - f/8, 1/60 - f/5,6, 1/120 - f/4 и т. д. Дальше самое интересное - определение правильной экспопары. Тут без помощи фотографа не обойтись. Нужно задать (ввести, установить) режим отработки экспозиции: программный автоматический (Р), приоритет выдержки (S), приоритет диафрагмы (А), сюжетные программы (полный автомат, портрет, пейзаж, макро, спорт, ночной...). Еще иногда встречается автоматическая экспозиция с учетом глубины резкости и всегда - автоматическая экспозиция с участием собственной вспышки. Дальше, определив экспозицию и получив от фотографа дополнительную творческую информацию, фотоаппарат сам выбирает оптимальное соотношение диафрагма - выдержка. Понятно, что если в одних и тех же световых условиях снимать спортивный репортаж и пейзаж, то в первом случае нужно отдать приоритет выдержке сделав ее как можно короче, а диафрагма пусть подстраивается. Во втором случае наоборот - нужно закрыть посильнее диафрагму и пусть выдержка будет длинной, чувствительность минимальной, а штатив устойчивым. Замечали? Именно по солидному штативу видно серьезного пейзажиста! Как вы думаете, насколько точно фотоаппарат делает то, что нужно фотографу? Правильно думаете - весьма точно. Только весьма опытный фотограф может решить эту задачу точнее. Поэтому, во многих фотоаппаратах, есть еще ручной режим (M), в котором система только подсказывает корректность установки экспопараметров, а сами параметры выставляет фотограф. С экспопарой и режимами отработки экспозиции разобрались, но это не все - еще есть экспокоррекция которая совершенно необходима если процессор туповат или категорически не согласен с вашими творческими замыслами. Если, например, вам нужно недоэкспонировать или переэкспонировать кадр вы вводите соответствующую экспопоправку и процессор честно ее отрабатывает. Ну и, наконец, на случай когда трудности не только у процессора, но и у фотографа, есть автоматическая экспозиционная вилка, она же экспозиционный брэкетинг. Как правило, это серийная съемка по три кадра в диапазоне ±2 ступени (EV), с шагом 1/2 или 1/3 ступени.

Про экспозицию и экспопару можно подробно прочитать в дополнении к данной лекции «Экспозиция и экспонометрия».

6. КАРТЫ ПАМЯТИ И ФОРМАТЫ ХРАНЕНИЯ ИЗОБРАЖЕНИЯ

Флэш-карты . Цифровая память на съемный носителях - способ и место хранения отснятых фотографий. Сегодня, в профессиональной фотографии используются, в основном, четыре типа:
- CF - Compact Flash.
- SD - Secure Digital Card - к ним же относятся «вложенные» форматы MiniSD и MicroSD.
- Memory Stick - к ним же относятся Memory Stick Pro, Memory Stick Pro Duo, Memory Stick Micro M2.
- xD-Picture Cards

CF (Compact Flash) - самый старый и распространенный тип флэш-памяти. Современные CF карты отличаются высокой скоростью чтения/записи и большим объёмом до 32Гб. Цены на флэш-память сейчас настолько снизились, что не имеет смысла пользоваться CF картами прошлых поколений.

SD (Secure Digital) - меньше по размеру и быстрее, чем CF карты, но имеют несколько меньшую ёмкость. Архитектура SD теоретически допускает более высокие скорости передачи данных, чем CF, поэтому считается более перспективной.

Memory Stick - формат флэш-памяти разработанный и продвигаемый компанией Sony. Этим если не все, то многое сказано.

xD-Picture Cards - наименее распространенный и, потому все более дорогой, по сравнению с прочими тип флэш-памяти, а следовательно наименее конкурентоспособный.

Форматы изображения . Есть три основных формата:
- RAW - технический формат, набор данных полученных непосредственно с матрицы;
- TIFF - стандартный для многих компьютерных программ формат, в котором каждая точка имеет описание цветовых показателей;
- JPEG - тоже стандартный формат, фактически сжатый (архивированный) файл, без потери или с минимальной потерей информации.

TIFF - последовательное поточечное описание всего изображения, с указанием для каждой точки всего набора данных. Последнее время редко используется для фотосъёмки, поскольку, использование этого формата существенно замедляет работу фотоаппарата из-за большого объема передаваемых данных и в разы сокращает количество кадров умещающихся на карте памяти. Например, фото с максимальным разрешением, сделанное ЦФК с 12-мегапиксельной матрицей в формате TIFF при 8 битах на канал, будет иметь объем 28Mb, а в формате JPEG с максимальным качеством - около 2,0 Mb, а в RAW - 10 Mb. Именно поэтому многие производители в моделях, ориентированных на фотолюбителя, отказались от использования формата TIFF.

JPEG сжатое изображение, имеет существенные недостатки другого характера. Во-первых, даже в случае минимальной компрессии, качество изображения в формате JPEG ниже оригинального. Во-вторых, JPEG не поддерживает битность выше восьми, что, как мы уже отмечали, отрицательно сказывается на тональном диапазоне изображения. В-третьих, изображения в форматах TIFF и JPEG нельзя использовать в качестве доказательства достоверности, потому что они легко поддаются редактированию в графических приложениях.

RAW - наиболее часто используемый в профессиональной цифровой фотографии формат, лишенный недостатков, упомянутых выше. Что же это за формат и чем он хорош, и почему TIFF в разы больше по объему, а информации содержится больше в RAW-е? Есть два определения, не очень научных, но совместно хорошо объясняющих смысл этого формата. Первое - RAW это сырой файл, содержащий исходные данные, полученные с матрицы. Второе - RAW это исходный черно-белый TIFF - не совсем корректное, но помогающее понять суть формата определение. RAW это поточечное описание всего изображения без цветовой информации. Файлы в этом формате требуют конвертации в компьютере, но зато дают возможность корректировать экспозицию и баланс белого в широких пределах. Кроме того, в формате невозможен фотомонтаж. В последнее время появляется все больше просмотрщиков и конверторов упрощающих работу с RAW и делающих его все более привлекательным для фотолюбителей.

7. ОРГАНЫ УПРАВЛЕНИЯ

Управление фотоаппаратом. Кроме традиционных кнопок (клавиш, дисков) включения питания, спуска, управления трансфокатором (зумом) и режимами съемки, в цифровой камере есть специальные кнопки и клавиши для работы с меню. На экране дисплея отображаются режимы и параметры фотосъемки, а также различные дополнительные установки, которые можно менять в ходе работы и после съемки для просмотра и пересылки отснятого материала. Естественно, производители стараются сделать общение с фотоаппаратом удобным и интуитивно понятным, но удается им это по-разному.

Независимо от того, чем вы снимаете, этот материал необходимо освоить, если вы хотите добиться качественных результатов в фотографии. В любом виде фотографии, знание материальной базы и умение использовать её достоинства и недостатки лежит в основе предсказуемости результата.

_______________________

Как устроены цифровые зеркальные фотоаппараты? Большинство из них устройство имеют примерно одинаковое. Это, прежде всего, корпус, собственно камера, на которую крепится фотообъектив. Объектив служит для создания изображения на матрице, а матрица - для записи фотографического изображения. В зеркальных аппаратах съемочный объектив так же передает изображение и в видоискатель. Незеркальные аппараты имеют чуть другую схему. Изображение на матрицу и изображение в видоискатель чаще всего передается двумя различными объективами. В этом случае объектив для видоискателя маленький и находится над основным объективом. В самых простых аппаратах, так называемых «мыльницах», на экране дисплея отображается изображение, которое непосредственно попадает на матрицу.

Принцип действия фотоаппарата примерно таков: световой поток проходит сквозь объектив и попадает на диафрагму. Диафрагма регулирует количество попавшего в объектив света и пропускает его дальше, на зеркало. Свет отражается от зеркала и попадает в призму, преломляясь через которую доходит до видоискателя, в котором фотограф и видит то, что находится непосредственно перед объективом. К изображению в видоискателе добавляется и другая полезная информация о снимаемом кадре. Что это за информация, ее количество - это зависит от конкретной модели аппарата. Как говорят, от его наворочености.

В собственно момент фотографирования зеркало, входящее в эту механическую конструкцию, поднимается и открывается затвор фотоаппарата. Именно в этот момент и происходит так называемое экспонирование. Свет попадает на матрицу и создает на ней изображение. После экспонирования затвор закрывается, зеркало опускается на свое место и ваш фотоаппарат готов сделать следующий снимок. Интересно то, что весь этот сложный технологический процесс происходит внутри аппарата за сотые и даже за тысячные доли секунды.

C того дня, как придумали это механическое устройство для фотосъемки, в процесс фотографирования не было внесено ничего принципиально нового. Световой пучок проходит сквозь объектив, масштабируется и попадает на установленный внутри фотоаппарата светочувствительный элемент. Этот принцип одинаков и для пленочных, и для цифровых фотокамер.

В чем заключается различие зеркального и незеркального фотоаппаратов? В чем преимущества зеркалки? Как мы уже сказали, зеркальный аппарат имеет в своей конструкции зеркало, которое позволяет нам в видоискателе видеть точно ту же картинку, что попадает на светочувствительный элемент.

А в чем отличие между зеркальным цифровым и зеркальным пленочным аппаратом? Вот на этом давайте остановимся поподробнее.

  • Первым делом следует сказать, что в зеркальном цифровом фотоаппарате использована электронная система записи изображения. Оно записывается на электронную карту памяти. В плёночном же аппарате изображение сохраняется на фотографической плёнке.
  • Практически все зеркальные фотокамеры записывают изображение на матрицу, поверхность которой меньше чем площадь кадра в пленочном зеркальном фотоаппарате.
  • Устройство цифрового зеркального фотоаппарата таково, что фотограф может сразу просматривать отснятые кадры. Зеркальный пленочный фотоаппарат такой возможности не предоставляет. Полученное изображение мы можем увидеть на фотоплёнке после некоторой химической её обработки.
  • Пленочные зеркалки старых моделей полностью механические. Они не нуждаются в электрическом питании. А современные цифровые зеркальные фотокамеры не могут жить и работать без батареек или аккумуляторных батарей.
  • При съемке зеркальной плёночной камерой кадр лучше немного переэкспонировать, а при работе с цифровой камерой - как раз наоборот: недоэкспозиция выгоднее.
  • Зеркальные фотоаппараты, не зависимо от того, пленочные они или цифровые, позволяют пользоваться множеством всевозможных аксессуаров: сменные объективы, фотовспышки, пульты дистанционного управления и пр.

Как устроен современный цифровой зеркальный фотоаппарат.

Давайте для начала рассмотрим его принципиальное устройство. Каждый современный человек сегодня знает, что основная часть любого фотоаппарата - это светонепроницаемая коробка, которую раньше называли камерой-обскурой. В одной из стенок этой коробки проделано отверстие. На противоположной от отверстия стенке находится светочувствительный сенсор, который называется матрицей. Для того, чтобы создать фотографический снимок, современные фотоаппараты оснащены множеством дополнительных элементов. Основные компоненты конструкции фотокамеры - объектив, затвор и диафрагма.

  1. Объектив - это оптическая конструкция, состоящая из стеклянных (или, в недорогих моделях пластиковых) линз. Световой поток преломляется, проходя сквозь эти линзы, попадает на матрицу или плёнку, что делает изображение качественным.
  2. Затвор - это устройство, чаще механическое, которое установлено между объективом и матрицей. Затвор представляет собой непрозрачную плоскость. Эта плоскость открывается и закрывается с огромной скоростью, чем регулирует доступ света на матрицу. Отрезок времени, на который затвор остается открытым, называется выдержка.
  3. Диафрагма - это круглое отверстие, которое может менять свой диаметр. Она позволяет дозировать количественное поступление света на матрицу фотокамеры. Диафрагма чаще всего установлена внутри объектива, между его линзами.

Ну вот, теперь вы имеете некоторое понятие о современной цифровой зеркальной фотокамере. Теперь давайте изучать это сложнейшее электронно-механическое устройство и принцип его работы более детально. Поговорим о каждом из упомянутых конструктивных элементах поподробнее.

Объектив

Объектив - наиболее важная составляющая любого фотоаппарата. Ему всегда уделяется особое внимание.

Что такое фотографический объектив? Это оптическая система линз, собранная в оправе из металла. Объектив проецирует изображение на плоскость. В цифровом фотоаппарате - на матрицу, в пленочном - на плёнку. Хорошие фотографические объективы должны давать на плёнке или матрице резкое изображение по всей площади кадра, его пропорции должны соответствовать реальным пропорциям объекта съемки. Современный объектив - изделие достаточно сложное технически. Производство объективов - высокотехнологичное и точное производство. На заводах, выпускающих объективы, каждый из них проверяется индивидуально и очень тщательно. В былые времена, на заре фотографии, в фотоаппаратах в качестве объектива использовалась всего одна собирательная линза. Но такой примитивный объектив имел множество недостатков. Например, изображение получалось резким только в центральной части кадра, по краям оно оставалось нерезким и размытым, прямые линии ближе к границам кадра становились изогнутыми. Путем комбинации, подбора линз в одну цельную оптическую систему ученые со временем научились избегать этих недостатков.

Ещё на стадии планирования покупки зеркального фотоаппарата необходимо задуматься об объективе. Дело в том, что одна и та же модель фотокамеры при продаже может комплектоваться различными объективами, а может продаваться и вообще без объектива. Всё зависит от выбора производителя и фирмы-продавца. Обычно покупка фотокамеры в комплекте с объективом обходится несколько дешевле, чем приобретение собственно камеры и объектива раздельно. Но иногда особо придирчивых покупателей предлагаемый комплект по каким либо характеристикам не устраивает.

Для начала рекомендуем выбирать объектив исходя из его универсальности. Проще говоря, это объектив, подходящий для всех видов съемки. От того, как широки будут возможности вашего первого объектива, зависит, как быстро вы поймете на практике, какой ещё объектив вам необходим для тех видов съемки, которым вы будете отдавать приоритет в своей работе. Если вы, например, увлечетесь фотоохотой - то вам будет нужен объектив с большим фокусным расстоянием, если вашей страстью станет съемка портретов - то потребуется объектив, который так и называется - портретный.

Но, даже если у вас и появятся различные объективы, в основном вы будете снимать объективом универсальным. Специализированные объективы - широкоугольники, длиннофокусники и пр. применяются в повседневной практике достаточно редко. Но, тем не менее, зачастую возникают ситуации, когда без специальных объективов не обойтись. И тогда их применение становится очень даже оправданным.

Все объективы в основном выпускаются со стандартной резьбой, что позволяет легко их заменять на разных моделях фотоаппаратов.

Подведём итог. К приобретению своего первого объектива нужно отнестись достаточно серьезно. В противном случае неудачная дорогостоящая покупка так и останется лежать в ящике вашего стола невостребованной. А ведь универсальный объектив как раз тем и хорош, что использовать его можно во всех случаях жизни. Например, в путешествиях, когда любой лишний вес может оказаться в тягость. А объективы - вещь довольно тяжелая.

Диафрагма

Если присмотреться, внутри объектива можно увидеть несколько лепестков, каждый из которых имеет форму дуги. Накладываясь один на другой, они образуют круглое отверстие, диаметр которого можно регулировать. Это устройство называется диафрагма. Сам этот термин имеет греческие корни, и буквально означает «перегородка». В английском языке для обозначения диафрагмы употребляется другой термин: «апертура».

Диафрагма - это устройство, которое регулирует количество света, попадаемого на матрицу или плёнку. Изменяя диаметр отверстия диафрагмы, мы меняем соотношение яркостей создаваемого объективом фотографического изображения. Влияет диафрагма и на яркость самого объекта.

Посредством специального довольно сложного механизма лепестки диафрагмы сводятся к центру и отверстие, которое они образуют, уменьшается. При изменении значения диафрагмы на одну ступень, диаметр уменьшается или увеличивается в 1,4 раза. А вот количество света, попадаемого на пленку или матрицу, увеличивается в другой пропорции - в 2 раза.

Зачем нам необходима диафрагма? Почему без неё не обойтись? Для какой цели этот сложный конструктивный узел включен в фотоаппарат? Главное - для регулирования светового потока на матрицу или плёнку. Например, снимая при ярком освещении целесообразно отверстие диафрагмы сделать поуже. А при недостатке света, естественно, пошире. Но далеко не только для этого нужна диафрагма. Между прочим, по большому счету без нее можно и обойтись. Почему? А вот почему.

Как уже было сказано выше, и диафрагма, и затвор являются своего рода перегородками на пути светового потока, идущего к матрице или плёнке. Диафрагму вместе с выдержкой называют также экспопарой. Например, при одной конкретной съемке диафрагма может быть широко открыта, а выдержка установлена более короткой, а при другой съемке - с точностью до наоборот: выдержка длинная, а отверстие диафрагмы маленькое. Вроде бы, кажется, что значение выдержки и диафрагмы взаимозаменяемы. И та, и другая влияют на количество света, попадаемого на матрицу или плёнку. Но это не совсем так. Точнее, совсем не так. Размер отверстия диафрагмы в первую очередь влияет на глубину резкости, или, как сейчас стали говорить специалисты, глубину резко изображаемого пространства (сокращенно - ГРИП). А это как раз и является весьма значимым функциональным фактором, позволяющим создавать различные творческие и технические эффекты, при помощи которых фотограф и достигает намеченного результата, поставленной цели съемки.

Не хочется вас загружать различными сложными формулами и определениями. Все равно на данном начальном этапе вы мало что запомните и поймёте. Вам сейчас важно понять и усвоить самое главное. В книжках, справочниках и формулах диафрагма обозначается буквой f. И чем большее число будет стоять около этой буквы, тем меньшим будет диаметр отверстия диафрагмы, которое оно обозначает. Например, как на своем языке говорят фотографы, дырка 2.8 шире, чем дырка 8 или 16. Сейчас в основном самое широкое отверстие диафрагмы - это 2,8 (на старинных объективах можно встретить диафрагму 1, 4). Таким образом, на большинстве современных объективов при значении 2,8 отверстие диафрагмы максимально. То есть, смело можно сказать, что диафрагмы в этом случае попросту нет. Между прочим, некоторые мастера считают, что чем меньше значение диафрагмы, то есть чем больше дырка в объективе, тем интереснее будет кадр, тем красивее будет выглядеть объект. Многие свадебные фотографы работают именно по этому принципу - как они говорят, «на полной дырке».

Теперь про глубину резкости. На старых объективах даже была нанесена специальная шкала глубины резкости. Принцип тут простой: чем отверстие диафрагмы меньше, тем глубина резкости больше. Измеряется глубина резкости в метрах. Например, при определенной фокусировке на какой то объект и при определенной диафрагме глубина резко изображаемого пространства будет от 1,5 до 5 метров. Несмотря на то, что основным способом управления глубиной резкости является диафрагма, на ГРИП так же влияют и другие параметры: размер матрицы аппарата, фокусное расстояние объектива, которым вы снимаете, расстояние до снимаемого объекта.

Для разных сюжетов и видов съемки глубина резкости нужна так же разная. Как применять глубину резкости на практике? Например, вы фотографируете пейзаж. Тогда смело закрывайте диафрагму, делайте ее отверстие меньше. И вы получите резкое изображение как ближних, так и дальних объектов снимаемого ландшафта. А если вы решили снять портрет, то фон лучше сделать нерезким, а собственно лицо модели - резким. Как этого добиться? Снимайте с маленькой глубиной резкости, то есть с большим отверстием диафрагмы. В этом случае нерезкость фона как бы оторвет портретируемого от окружающего пространства. С маленькой глубиной резкости хорошо снимать крупным планом цветы, или ещё какие-нибудь объекты небольшого размера. Резкость можно настроить на ближний край цветка. А дальний от фотографа и зрителя край вывести в нерезкость. Это будет очень красиво. За счет маленькой глубины резкости хорошо делать акценты. Зритель сразу понимает, на что автор фотографии хочет обратить его внимание.

Регулировка глубины резко изображаемого пространства - очень важное средство в арсенале фотографа.

В компактных цифровых аппаратах, или каких ещё называют, мыльницах, глубина резкости будет большой при любом положении диафрагмы. Так уж рассчитаны их объективы разработчиками. Это очень мешает реализации многих творческих идей фотографа, но в то же время дает хорошего качества повседневные бытовые снимки для фотолюбителей. Мыльницы ведь и рассчитаны на эту категорию пользователей.

Затвор

Переходим к описанию следующего элемента фотоаппарата - затвору. Для чего они необходим?

Затвор - этот дико сложный механизм, гораздо сложнее, чем механизм диафрагмы. Его можно назвать сердцем любого фотоаппарата. Затвор отмеряет время, на протяжении которого свет действует на матрицу или на фотоплёнку, и происходит собственно процесс экспонирования. Это время, на которое затвор открыт, называется выдержкой. Затвор находится внутри фотокамеры, постороннему взгляду его не видно. Но зато его в зеркальных (как цифровых, так и плёночных) камерах хорошо слышно. Именно он издает тот самый характерный щелчок, ставший символом всей фотографии.

Что же происходит с затвором в момент фотографирования?

Затвор представляет собой механическое устройство, включающее в себя одну или две непрозрачные шторки, которые могут быть расположены как горизонтально, так и вертикально. Именно эти шторки открываются и закрываются, дозируя световой поток. Выдержка измеряется во времени. Чаще всего, это доли секунды. То есть затвор, можно сказать, работает молниеносно. Трудно даже представить себе отрезок времени, составляющий 1/250 или 1/500 долю секунды, не говоря уж о 1/1000 и менее. Но механический затвор имеет предел скорости срабатывания. Тогда каким же образом работают выдержки 15000 и 1/7000 секунды, на которые способна современная фотоаппаратура? Для этих целей инженерами разработан так называемый цифровой затвор. Тут регулировка выдержки осуществляется непосредственно на матрице, электроникой. Происходит это в таком режиме: при нажатии кнопки спуска открываются шторки физического, механического затвора, причем на минимально возможное время, затем на матрицу аппарата от его «электронной начинки» поступает цифровой сигнал, который включает экспонирование матрицы, а спустя какое то время другой сигнал отключает это экспонирование, а затем закрываются шторки и физического затвора. Величина выдержки зависит от освещенности снимаемого объекта, об общей освещенности в помещении, в котором вы снимаете, от скорости движения объекта или объектов съемки. Выдержку всегда нужно соотносить с диафрагмой.

Если в современном зеркальном цифровом фотоаппарате установлено и работает сразу два затвора, может возникнуть вопрос: а зачем в таком случае нужен тут механический затвор? Ответим. Кроме своей основной функции - отмеривания времени - он так же выполняет функцию защиты матрицы от пыли и грязи. Пыль и грязь наносят ей серьезные повреждения. А ведь матрица - самый дорогой и нежный элемент современного фотоаппарата.

Механизм любого фотоаппарата, будь то плёночного или современного зеркального цифрового фотоаппарата, немыслим без затвора. Но из-за наличия в механическом затворе шторок, в цифровых зеркалках исключена возможность визирования по дисплею. Матрица закрыта этими шторками, и изображение на дисплей передаваться просто не имеет возможности. При нажатии кнопки спуска шторки открываются (за счет или пружин, или электромагнитов), и на матрице происходит формирование изображения. В цифровых аппаратах с несъемной оптикой чаще всего стоит электронный затвор. Проще говоря, матрица сама на время проведения экспонирования включается, и по окончании этого времени отключается. Во время экспонирования и происходит запись изображения. Все остальное время на дисплей выводится сигнал для визирования, или, говоря по-другому, наводки. Преимущества электронного затвора очевидно - он может работать на несравненно более высоких скоростях, чем механический. Но, тем не менее, комбинированный электронно-механический затвор намного лучше.

Несколько слов о вспышке

О фотовспышке поговорим только в общих чертах. Причем, упор сделаем на штатную, встроенную в сам фотоаппарат вспышку, которую иногда весело называют «лягушкой» (потому что она, как лягушка, выпрыгивает из фотоаппарата). Вспышка может работать в нескольких режимах, которые соотносятся с режимами работы самого фотоаппарата.

  • Автоматический режим. Вспышка срабатывает (или не срабатывает) автоматически. В этом режиме автоматически же регулируется длительность излучаемого ей светового импульса и его мощность в зависимости от условий освещения, в которых производится съемка. Такой режим удобен тем, что при нём экономится заряд электрической батареи. Но, тем не менее, он не всегда может быть использован. Например, при съемке в контровом свете. Так уж устроен фотоаппарат.
  • Принудительный режим фотовспышки. Вспышка будет срабатывать всегда, независимо от уровня освещенности. В этом режиме недоступно регулирование длительности и мощности светового импульса. Как говорят специалисты, вспышка тут полностью использует своё ведущее число. Такой режим работы со вспышкой применим практически во всех случаях съемки, однако и расход энергии батареи тут будет более высоким, чем в предыдущем режиме.
  • Режим медленной синхронизации. При таком режиме скорость срабатывания затвора (проще говоря, выдержка), устанавливается на более продолжительное время, чем длительность светового импульса. Это делается для дополнительной проработки фона и заднего плана снимаемой сцены. Ведь встроенная в фотоаппарат вспышка достаточно слаба и зачастую ее световой поток не достаёт («не добивает») до фона.
  • Режим съемки без вспышки. Тут вспышка вообще не срабатывает. Этот режим необходим в тех ситуациях, когда съемка со вспышкой запрещена или в ней нет никакой необходимости, так как условия освещенности вполне благоприятные. А при благоприятном естественном освещении изображение всегда получается намного лучше, естественно передаются цвета объектов, теневые и освещенные его участки.

В более совершенных фотоаппаратах предусмотрены и другие режимы работы вспышки, например . В этом режиме перед основной вспышкой, во время которой срабатывает затвор, производится ещё несколько коротких вспышек. Это сделано для того, чтобы у людей, которых вы фотографируете, рефлекторно сузились зрачки глаз. Ведь что такое «красные глаза»? Не что иное, как отражение яркого света вспышки, проникающего через широко открытые зрачки на глазное дно. А если зрачки будут узкими, то и отражение сильного света в глазном дне будет практически незаметным. Такой режим нужно применять лишь при съемке людей. В противном случае - это пустая трата не только энергии батарей, но и времени.

Не нужно забывать, что использование штатной, встроенной в аппарат (как иногда называют - бортовой) фотовспышки делает лица людей на снимке довольно плоскими. Происходит это из-за того, что вспышка находится в непосредственной близости к объективу и «бьёт» прямо в лоб снимаемому человеку, лишая его лицо теней. Стало быть, со встроенной вспышкой людей лучше снимать под небольшим углом - чтобы появились хоть какие-то тени на лице. Но и под большим углом снимать тоже не надо - тени будут слишком грубыми и неестественными.


Человека всегда тянуло к прекрасному, увиденной красоте человек пытался придать форму. В поэзии это была форма слова, в музыке красота имела гармоническую звуковую основу, в живописи формы прекрасного передавались красками и цветом. Единственное, что не мог человек, это запечатлеть мгновение. Например, поймать разбивающуюся каплю воды или рассекающую грозовое небо молнию. С появлением в истории фотоаппарата и развитием фотографии это стало возможным. История фотографии знает множественные попытки изобретения фотографического процесса до создания первой фотографии и берет начало в далеком прошлом, когда математики изучая оптику преломления света обнаруживали, что изображение переворачивается, если пропустить его в темную комнату через небольшой отверстие.

В1604 г. немецкий астроном Иоганн Кеплер установил математические законы отражения света в зеркалах, которые в последствии залегли в основу теории линз по которым другой итальянский физик Галилео Галилей создал первый телескоп для наблюдения за небесными телами. Принцип преломления лучей был установлен, оставалось только научиться каким-то образом сохранять полученные изображения на отпечатках еще не раскрытым химическим путем.

В 1820-е гг.. Жозеф Нисефор Ньепс открыл способ сохранения полученного изображения путем обработки попадающего света асфальтовым лаком (аналог битума) на поверхность из стекла в, так называемой камере-обскуре. С помощью асфальтового лака изображение принимало форму и становилось видимым. В первые в истории человечества картину рисовал не художник, а падающие лучи света в преломлении.

В 1835 г. английский физик Уильям Тальбот, изучая возможности камеры-обскура Ньепса смог добиться улучшения качества фотоизображений с помощью изобретенного им отпечатка фотографии - негатива. Благодаря этой новой возможности снимки теперь можно было копировать. На своей первой фотографии Тальбот запечатлел собственное окно на котором четко просматривается оконная решетка. В будущем он написал доклад, где называл художественное фото миром прекрасного, таким образом заложив в историю фотографии будущий принцип печати фотографий. В 1861 г. фотограф из Англии Т. Сэттон изобрел первый фотоаппарат с единым зеркальным объективом. Схема работы первого фотоаппарата была следующей, на штатив закреплялся крупный ящик с крышкой сверху, через которую не проникал свет, но через которую можно было вести наблюдение. Объектив ловил фокус на стекле, где с помощью зеркал формировалось изображение.

В 1889 г. в истории фотографии закрепляется имя Джорджа Истмана Кодак, который запатентовал первую фотопленку в виде рулона, а потом и фотокамеру "Кодак", сконструированную специально для фотопленки. В последствии, название "Kodak" стало брэндом будущей крупной компании. Что интересно, название не имеет сильной смысловой нагрузки, в данном случае Истман решил придумать слово, начинающееся и заканчивающиеся на одну и ту же букву.

В 1904 г. братья Люмьер под торговой маркой "Lumiere" начали выпускаться пластины для цветного фото, которые стали основоположниками будущего цветной фотографии .

В 1923 г. появляется первый фотоаппарат в котором используется пленка 35 мм, взятая из кинематографа. Теперь можно было получать небольшие негативы, просматривая затем их выбирать наиболее подходящие для печатания крупных фотографий. Спустя 2 года фотоаппараты фирмы "Leica" запускаются в массовое производство.

В 1935 г. фотоаппараты Leica 2 комплектуются отдельным видеоискателем, мощной фокусировочной системой, совмещающие две картинки в одну. Чуть позже в новых фотоаппаратах Leica 3 появляется возможность использования регулировки длительности выдержки. Долгие годы фотоаппараты Leica оставались неотъемлимыми инструментами в области искусства фотографии в мире.

В 1935 г. компания "Kodak" выпускает в массовое производство цветные фотопленки "Кодакхром". Но еще долгое время при печати их надо было отдавать на доработку после проявки где уже накладывались цветные компоненты во время проявки.

В 1942 г. "Kodak" запускают выпуск цветных фотопленок "Kodakcolor", которые последующие полвека становятся одними из популярными фотопленками для профессиональных и любительских камер.

В 1963 г. представление о быстрой печати фотографий переворачивают фотокамеры "Polaroid", где фотография печатается мгновенно после полученного снимка одним нажатием. Достаточно было просто подождать несколько минут, чтобы на пустом отпечатке начали прорисовываться контуры изображений, а затем проступала полностью цветная фотография хорошего качества. Еще 30 лет универсальные фотоаппараты Polaroid будут занимать ведущие по популярности места в истории фото, чтобы уступить эпохе цифровой фотографии.

В 1970-х гг. фотоаппараты снабжались встроенным экспонометром, автофокусировку, автоматические режимы съемки, любительские 35 мм камеры имели встроенную фотовспышку. Чуть позже к 80-м годам фотоаппараты начали снабжаться ж/к панелями, которые показывали пользователю программные установки и режими фотокамеры. Эра цифровой техники только начиналась.

В 1974 г. с помощью электронного астрономического телескопа была получена первая цифровая фотография звездного неба.

В 1980 г. компания "Sony" готовит к выпуску на рынок цифровую видеокамеру Mavica. Снятое идео сохранялось на гибком флоппи-диске, который можно было бесконечно стирать для новой записи.

В 1988 г. компания "Fujifilm" официально выпустила в продажу первый цифровой фотоаппарат Fuji DS1P, где фотографии сохранялись на электронном носителе в цифровом виде. Фотокамера обладала 16Mb внутренней памяти.

В 1991 г. компания "Kodak" выпускает цифровую зеркальную фотокамеру Kodak DCS10, имеющую 1,3 mp разрешения и набор готовых функций для профессиональной съемки цифрой.

В 1994 г. компания "Canon" снабжает некоторые модели своих фотокамер системой оптической стабилизации изображений.

В 1995 г. компания "Kodak", следом за Canon прекращает выпуск популярных последние полвека пленочных своих фирменных фотокамер.

2000-х гг. Стремительно развивающиеся на базе цифровых технологий корпорации Sony, Samsung поглощают большую часть рынка цифровых фотоаппаратов. Новые любительские цифровые фотоаппараты быстро преодолели технологическую границу в 3Мп и по размеру матрицы легко соперничают с профессиональной фототехникой имея размер от 7 до 12 Мп. Несмотря на быстрое развитие технологий в цифровой технике, таких как: распознавание лица в кадре, исправление оттенков кожи, устранение эффекта "красных" глаз, 28-кратное "зумирование", автоматические сцены съемки и даже срабатывание камеры на момент улыбки в кадре, средняя цена на рынке цифровых фотокамер продолжает падать, тем более что в любительском сегменте фотоаппаратам начали противостоять мобильные телефоны, снабженные встроенными камерами с цифровым зумом. Спрос на пленочные фотоаппараты стремительно упал и теперь наблюдается другая тенденция повышения цены аналоговой фотографии, которая переходит в разряд раритета.



Устройство пленочного фотоаппарата

Принцип работы аналогового фотоаппарата: свет проходит через диафрагму объектива и, вступая в реакцию с химическими элементами пленки сохраняется на пленке. В зависимости от настройки оптики объектива, применения особых линз, освещенности и угла направленного света, времени раскрытия диафрагмы можно получить различный вид изображения на фотографии. От этого и многих других факторов формируется художественный стиль фотографии. Конечно, главным критерием оценки фотографии остается взгляд и художественный вкус фотографа.

Корпус.
Корпус фотоаппарата не пропускает свет, имеет крепления для объектива и фотоспышки, удобную форму ручки для захвата и место для крепления к штативу. Внутрь корпуса помещается фотопленка, которая надежно закрыта светонепропускающей крышкой.


Фильмовой канал.
В нем пленка перематывается, останавливась на нужном для съемке кадре. Счетчик механически связан с фильмовым каналом, при прокрутке которого указывает на количество отснятых кадров. Существуют камеры с моторным приводом, которые позволяют делать съемку через последовательно заданный промежуток времени, а также вести скоростную съемку до нескольких кадров в секунду.


Видоискатель.
Оптический объектив через которое фотограф видит в рамке будущий кадр. Зачастую имеет дополнительные метки для определения положения объекта и некоторые шкалы настройки светка и контрастности.

Объектив.
Объектив - мощный оптический прибор, состоящий из нескольких линз, позволяющий делать изображения на различном расстоянии со сменой фокусировки. Объективы для профессиональной фотосъемки помимо линз состоят еще из зеркал. Стандартный объектив имеет расстояние фокусаокругленно равное диагонали кадра, угол 45 градусов. Фокусное расстояние широкоугольного объектива меньшее диагонали кадра служит для съемки в небольшом пространстве, угол до 100 градусов. для удаленных и панорамных объектов применяется телескопический объектив у которого фокусное расстояние гораздо больше диагонали кадра.

Диафрагма.

Устройство регулирующее яркость оптической картинки объекта фотографирования по отношению к его яркости. Наибольшее распространение получила ирисовая диафрагма, у которой световое отверстие образуется несколькими серповидными лепестками в виде дуг, при съемке лепестки сходятся или расходятся, уменьшая или увеличивая диаметр светового отверстия.

Затвор

Затвор фотоаппарата приоткрывает шторки для попадания света на пленку, затем свет начинает действовать на пленку, вступая в химическую реакцию. От продолжительности приоткрытия затвора зависит экспозиция кадра. Так для ночной съемки ставится более длительная выдержка, для съемке на солнце или скоростной съемке максимально короткая.





Дальнометр.

Устройство с помощью которого фотограф определяет расстояние до объекта съемки. нередко дальномер бывает совмещен для удобства с видоискателем.

Кнопка спуска.

Запускает процесс фотосъемки длящийся не более секунды. В одно мгновение срабатывает затвор, раскрываются лепестки диафрагмы, свет попадает на химический состав фотопленки и кадр запечатлен. В старых пленочных фотоаппаратах кнопка спуска основана на механическом приводе, в более современных фотоаппаратах кнопка спуска, как и остальные движущиеся элементы камеры на электроприводе


Катушка фотплёнки
Катушка на которую крепится фотопленка внутри корпуса фотоаппарата.По окончании кадров на пленке в механических моделях пользователь перематывал фотопленку в обратном направлении в ручную, в более современных фотоаппаратах пленка перематывалась по окончании с помощью электромоторного привода, работающего от пальчиковых батареек.


Фотовспышка.
Плохая освещенность объектов фотосъемки приводит к использованию фотоспышки. В профессиональной съемке к этому приходится прибегать только в неотлагательных случаях когда нет других приборов освещения экранов, ламп. Фотоспышка состоит из газорязрядной лампы в виде стеклянной трубки содержащей газ ксенон. При накапливании энергии вспышка заряжается, газ в стеклянной трубке ионизируется, затем мгновенно разряжается, создавая яркую вспышку при силе света свыше сотни тысяч свечей. При работе вспышки нередко отмечается эффект "красных глаз" у людей и животных. Это происходит потому, что при недостаточной освещенности помещения где проводится фотосъемка, глаза человека расширяются и при срабатывании вспышки зрачки не успевают сузиться, отражая слишком много света от глазного яблока. Для усранения эффекта "красных глаз" используется один из методов предварительного направления светового потока на глаза человека перед срабатыванием вспышки, что вызывает сужение зрачка и меньшим отражением от него света вспышки.

Устройство цифрового фотоаппарата


Принцип работы цифрового фотоаппарата на стадии прохождения света через линзу объектива тот же, что и у пленочного. Изображение преломляется через систему оптики, но сохраняется не на химическом элементе фотопленки аналоговым путем, а преобразуется в цифровую информацию на матрице от разрешающей способности которой и будет зависеть качество снимка. Затем перекодированное изображение в цифровом виде сохраняется на сменном носителе информации. Информацию в виде изображения можно редактировать, перезаписывать и отправлять на другие носители данных.

Корпус.

Корпус цифрового фотоаппарата имеет вид по аналогии с пленочным фотоаппаратом, но за счет отсутствия необходимости фильмового канала и места для катушки с пленкой, корпус современного цифрового фотоаппарата значительно тоньше обычного пленочного и имеет место для ЖК экрана, встроенного в корпус, либо выдвижного, и слоты для карт памяти.

Видоискатель. Меню. Настройки (ЖК экран) .

Жидкокристалический экран неотъемлимая часть цифрового фотоаппарата. Он имеет совмещенную функцию видоискателя, в котором можно приближать объект, видеть результат автофокусировки, выстраивать экспозицию по границам, а также использовать его в качестве экрана меню с настройками и опциями набора функций съемки.

Объектив.

В профессиональных цифровых фотоаппаратах объектив практически ничем не отличается от аналоговых фотокамер. Он также состоит из линз и набора зеркал и имеет те же механические функции. В любительских камерах объектив стал гораздо меньших форм и помимо оптического зума (приближение объекта) имеет встроенный цифровой зум, который способен многократно приблизить отдаленный объект.

Матрица сенсор.

Главный элемент цифровой фотокамеры небольшая пластина с проводниками которая формирует качество изображения, четкость которого и зависит от разрешающей способности матрицы.

Микропроцессор.

Отвечает за все функции работы цифровой камеры. Все рычаги управления камеры ведут к процессору в котором зашита программная оболочка (прошивка), которая отвечает за действия фотокамеры: работа видоискателя, автофокус, программные сцены съемки, настройки и функции, электрический привод выдвижного объектива, работа фотовспышки.

Стабилизатор изображений.

При покачивании камеры во время нажатия на спусковой завтор или при съемке с движущейся поверхности, например, с качающегося на волнах катера, изображение может получится размытое. Оптический стабилизатор практически не ухудшает качество полученной картинки за счет дополнительной оптики, которая компенсирует отклонения изображения при покачивании, оставляя изображение неподвижным перед матрицей. Схема работы цифрового стабилизатора изображения фотоаппарата при дрожании картинки заключается в условных поправках, вносимых при расчете картинки процессором, задействовав дополнительную треть пикселей на матрице, учавствующих только в коррекции изображения.

Носители информации.

Полученное изображение сохраняется в памяти фотоаппарата в виде информации на внутренней, либо внешней памяти. Фотоаппараты имеют разъемы для карт памяти SD, MMC, CF, XD-Picture и др., а также разъемы для подключения к другим источникам храненияинформации компьютеру, HDD сменным носителям и т.п.

Цифровая фототехника сильно поменяла представления в истории фотографии о том какое должно быть художественное фото. Если в прежние времена фотографу приходилось идти на различные ухищрения, чтобы получить интересный цвет или необычный фокус для определения жанра фотографии, то теперь есть целый набор примочек, включенных в программное обеспечение цифровой фотокамеры, коррекция размеров изображения, изменение цвета, создание рамки вокруг фото. Также любую отснятую цифровую фотографию можно подвергнуть редактированию в известных фоторедакторах на компьютере и легко установить в цифровую фоторамку, которые следом за пошаговым наступлением цифровых технологий становятся все более популярными для украшения интерьера чем-то новым и необычным.

Учебный элемент

Фотокамера.

Устройство и принцип действия, интерфейсы подключения и правила эксплуатации, инструкция установки драйверов. Сравнительная характеристика.

В декабре 1975 года, инженер компании Kodak Стиви Сэссон изобрел нечто, что спустя несколько месяцев перевернуло все представления о фотографии - первый в мире цифровой фотоаппарат. Камера была размером с тостер и умела делать черно-белые снимки с разрешением 100x100 пикселей. Сегодня бы сказали, что камера имела разрешение в 0,01 мегапикселя. Снимки записывались на магнитофонную кассету. На запись одного снимка уходило 23 секунды. Для просмотра снимков использовалась специальная ТВ-приставка.

История развития фототехники привела к тому, что были выработаны определённые стандарты на интерфейс между фотографом и используемой им фототехникой. В результате цифровые фотоаппараты (цифровая фотокамера, ЦФК) в большинстве своих внешних черт и органах управления повторяют модели плёночной фототехники. Принципиальное различие оказывается в «начинке» аппарата, в технологиях фиксации и последующей обработки изображения.

Основное предназначение цифровых камер состоит в съемке и по­следующем вводе в ЭВМ изображений (статических или движущихся в соответствии с типом камеры). Изобретения эти позволили отказа­ться от одной промежуточной стадии традиционных фото - и кино­процессов, связанной с обработкой (проявкой, закреплением и т. п.) пленок. В результате цифровое фото в первую очередь обрело по­пулярность у фотографов, занимающихся репортажной съемкой, и гораздо позже - у студийных фотографов-профессионалов

Цифровой фотоаппарат - это фотоаппарат, в котором для получения изображения используется массив полупроводниковых светочувствительных элементов, называемый матрицей, на которую изображение фокусируется с помощью системы линз объектива. Полученное изображение, в электронном виде сохраняется в виде файлов в памяти фотоаппарата или дополнительном носителе, вставляемом в фотоаппарат.

282" height="35" bgcolor="white" style="vertical-align:top;background: white">

Рис.1 Принцип действия цифровой камеры

Чтобы понять, как устроен цифровой фотоаппарат, вначале нужно разобраться с его принципом действия. (Рис.1) Лучи света, несущие изображение, проходя через объектив (до нажатия клавиши затвора в зеркальных фотоаппаратах между объективом и матрицей расположено зеркало, отражаясь от которого, свет попадает в видоискатель), фокусируются на сенсоре, или матрице, цифрового фотоаппарата. Этот сенсор выполняет ту же роль, которую выполняла когда-то светочувствительная поверхность фотопленки. Устройство цифрового фотоаппарата невозможно представить без сенсора, или матрицы, которая обладает возможностью преобразовывать поток фотонов в поток электронов, - иначе говоря, в электрический ток. Этот очень слабый электрический сигнал попадает затем в усилитель, после – в специальный преобразователь, превращающий его в информацию в виде битов, затем – в процессор, где эта информация преобразовывается в изображение. В конце концов, полученное изображение записывается в память цифрового фотоаппарата.

Типичная цифровая фотокамера состоит из объектива, диафраг­мы, системы фокусировки (оптомеханическая часть) и матрицы ПЗС (фотоэлектронная часть), которая и производит фиксацию изобра­жения. (Рис.2-3)

компактная цифровая фотокамера зеркальная цифровая фотокамера

https://pandia.ru/text/78/176/images/image004_83.jpg" align="left" width="313" height="194 src=">

Рис.2 Рис.3

Электронные схемы" href="/text/category/yelektronnie_shemi/" rel="bookmark">электронной схеме фотоаппарата. Матрица (иногда её называют сенсором) представляет собой полупроводниковую пластину, содержащую большое количество светочувствительных элементов, в подавляющем большинстве случаев сгруппированных в строки и столбцы.

Комплементарий" href="/text/category/komplementarij/" rel="bookmark">комплементарный металл-оксид-полупроводник, по-английски CMOS - Complementary-symmetry/Metal-Oxide Semiconductor).

Процессор в фотоаппарате по праву можно назвать мозговым центром цифровой фотокамеры. (Рис.5) Роль процессора заключается в том, чтобы из поступающей в него информации создать изображение, что не так просто. Во-первых, процессору цифровой фотокамеры нужно учесть все цветовые нюансы, а также использовать процесс интерполяции для повышения четкости изображения. Кроме того, процессору необходимо рассчитать баланс белого, контраст, яркость и некоторые другие характеристики снимка, включая визуальные эффекты.

Наконец, когда картинка готова, информация о ней преобразовывается цифровой фотокамерой в нужный формат, сжимается и помещается в память. Здесь подключается буферная память, напрямую влияющая на скорострельность камеры.

Аберрация" href="/text/category/aberratciya/" rel="bookmark">аберраций , используя при этом наименьшее число наименее дорогоhttps://pandia.ru/text/78/176/images/image011_9.png" alt="Подпись: Рис.6" align="left" width="502" height="31 src=">

Диафрагма - это такое устройство, которое помогает изменить количество световых лучей, проходящих через объектив фотоаппарата. К тому же именно диафрагма регулирует яркость изображения. Если говорить примитивным языком, диафрагма имеет форму лепестков, которые при помощи специального кольца могут одновременно поворачиваться, перекрывая друг друга. Таким образом, оставшееся в центре свободное пространство изменяется от максимального до минимального, тем самым регулируя поток света. В зависимости от типа и назначения объективы фотоаппарата различают между собой по двум основным параметрам: светосиле, которая характеризует яркость изображения, и фокусному расстоянию, которое определяет масштаб и угол изображения. Объектив цифровой камеры не претерпел кардинальных изменений по сравнению с объективами обычных фотокамер. Из-за меньших размеров сенсора, объективы цифровых камер (за исключением зеркальных камер, использующих те же объективы) имеют меньшие геометрические https://pandia.ru/text/78/176/images/image013_38.jpg" align="left" width="168" height="111 src=">Видоискатель - элемент фотоаппарата, показывающий границы будущего снимка и в некоторых случаях резкость и параметры съёмки (рис.7). На бытовых цифровых фотоаппаратах в качестве видоискателя используются ЖК экраны (на зеркальных в режиме LiveView и на

Рис.7

компактных камерах) и различные виды электронных и оптических видоискателей.

https://pandia.ru/text/78/176/images/image015_30.jpg" align="left" width="133" height="156 src=">Карта памяти - носитель информации, который обеспечивает длительное хранение данных большого объёма, в том числе изображений, получаемых цифровым фотоаппаратом. (Рис.8)

https://pandia.ru/text/78/176/images/image017_4.png" alt="Подпись:" align="left" width="109" height="32">Внешний интерфейс подключения к компьютеру общего назначения имеется практически во всех цифровых камерах. (Рис.9) На сегодня самым распространённым из них является USB. Также применяются специальные виды разъёмов для подключения к телевизору или принтеру. Появились первые модели фотокамер с беспроводными интерфейсами. Подключенный к порту USB компьютера фотоаппарат обнаруживается драйвером, который создает логический диск в системе Windows и обеспечивает прямой доступ из любого приложения. Пользователь может просматривать отснятые кадры, удалять неудачные и копировать приемлемые точно так же, как если бы к компьютеру был подключен обычный жесткий диск.

Кнопки цифрового фотоаппарата

Рис.10


Органы управления цифровым фотоаппаратом сгруппированы на верхней и задней панелях корпуса камеры. На верхней панели располагаются (с некоторыми отличиями от модели к модели) спусковая кнопка затвора, трехпозиционный переключатель управления моторным приводом изменения фокусного расстояния зуммируемого объектива (этот переключатель может быть заменен трехпозиционной клавишей на, чаще всего, задней или, реже, передней панели корпуса камеры) и дисковый селектор выбора рабочих режимов фотоаппарата. (Рис.10)


рис. 11. Кнопки задней панели цифрового фотоаппарата

На задней (или верхней, как у компактных камер) панели корпуса располагаются главный выключатель питания, кнопка активации и переключения режимов работы встроенной вспышки, включатель серийной съемки, кнопка экспокоррекции, кнопка включения/выключения цветного контрольного дисплея, кнопка вызова экранного меню и четырехпозиционная круглая кнопка навигации по меню. Этой же кнопке могут быть присвоены функции включения экспокоррекции, быстрого выбора светочувствительности сенсора и установки электронного автоспуска. (Рис.11)

Правила эксплуатации фотокамер

Редукторы" href="/text/category/reduktori/" rel="bookmark">редукторов фокусировки и трансфокации, зачастую приводят к заклиниванию объектива, и нередко выводят фотоаппарат из строя.

Правильная эксплуатация фотоаппарата сводится, в основном, к соблюдению инструкции, бережному и аккуратному обращению. Нарушение этих правил ведет к самым серьезным повреждениям аппарата.

Практика ремонта фотоаппаратов показывает, что большинство неисправностей вызвано именно этими обстоятельствами.

Инструкция по установке и подключения фотокамер

https://pandia.ru/text/78/176/images/image023_20.jpg" align="left" width="165" height="131 src=">После этого на мониторе компьютера с операционной системой Windows XP должна появится надпись.

Затем появится окно мастера установки нового оборудования. (Рис.12)

https://pandia.ru/text/78/176/images/image025_24.jpg" align="left" width="156" height="122 src=">

Увидев его, установите в CD-ROM привод компьютера диск из комплекта фотоаппарата. Если к камере прилагается несколько дисков, выберите тот, на котором есть надпись «USB Driver» и нажмите кнопку «далее». Компьютер начнет поиск необходимого драйвера на компакт-диске.

https://pandia.ru/text/78/176/images/image027_0.png" alt="Подпись: Рис.13" align="left" width="160" height="28 src=">Если поиск увенчается успехом, на экране отобразится окно установки драйвера. После того как установка будет завершена, нажмите кнопку «Готово» в появившемся окне. В подтверждение удачной установки на мониторе отобразится информационное окно. (Рис.13)

Через пару секунд после этого появится окно с выбором действий для нового «съемного диска». Здесь вы можете выбрать требуемое действие, но для начала лучше всего скопировать снимки на жесткий диск компьютера. Это можно сделать как в автоматическом режиме, так и вручную. (Рис.14)

https://pandia.ru/text/78/176/images/image029_1.png" alt="Подпись: Рис.14" align="left" width="124" height="27 src=">Согласно стандарту DCIF все цифровые фотоаппараты создают на карте памяти директорию «DCIM». Если вы увидите другие директории, не обращайте на них внимания, фотографии хранятся в глубине директории «DCIM». Открыв эту папку, вы увидите еще одну поддиректорию, в названии которой присутствует трехзначная цифра, сокращение от названия фирмы-производителя цифрового фотоаппарата, и, возможно, еще цифру. В этой папке и находятся ваши снимки!

Программное обеспечение" href="/text/category/programmnoe_obespechenie/" rel="bookmark">программного обеспечения и перезагрузки компьютера. Только после этого фотоаппарат будет распознан компьютером.

- Некоторые устаревшие модели не могут быть распознаны компьютером как сменный диск. TWAIN интерфейс такого фотоаппарата работает только в паре с каким-либо графическим редактором. Для сохранения снимков необходимо запустить графический редактор, выбрать опцию «импорт», а затем необходимое TWAIN устройство (главным образом этот интерфейс используется при работе со сканерами). После чего на экране появится окно с миниатюрами снимков. Выбранные снимки будут открыты в графическом редакторе, и только после этого их можно будет сохранить на жесткий диск, используя данную опцию графического редактора.

- Подключая современный фотоаппарат к компьютеру с устаревшей операционной системой, и, наоборот, при подключении устаревшего фотоаппарата к новой ОС вы можете столкнуться с непреодолимой проблемой отсутствия или неработоспособности драйвера. В этом случае будет проще использовать кардридер для копирования снимков, чем подключить камеру к ПК.

- Драйверы некоторых цифровых фотоаппаратов есть в стандартной комплектации Microsoft Windows XP. При подключении такой камеры она будет практически моментально распознана как съемный диск, без необходимости установки драйвера с компакт-диска.

- Если драйвер не будет найден компьютером на компакт-диске автоматически, попробуйте установить другой диск из комплекта фотоаппарата. Либо попробуйте запустить установку драйвера, используя меню, автоматически появляющиеся на экране при установке компакт-диска.

- Перед переносом снимков в ПК убедитесь, что элементы питания фотоаппарата не истощены, либо подключите камеру к сетевому адаптеру. Отключение питания во время переноса может привести к потере снимков.

Сравнительная характеристика компактных и зеркальных

цифровых фотокамер

характеристики

Компактные цифровые фотокамеры

Зеркальные цифровые фотокамер

Изображение

Видоискатель

Видоискатель компактной камеры всего лишь пытается оценить изображение, которое попадёт на сенсор, что потенциально менее точно. Компактные камеры могут также использовать то, что называется электронным видоискателем (ЭВИ), который пытается воспроизвести видоискатель зеркальной камеры, используя изображение с сенсора.

когда вы нажимаете кнопку спуска на зеркальной камере, зеркало поднимается, и свет, который был перенаправлен в видоискатель, попадает на сенсор камеры. Подъём зеркала как раз создаёт тот характерный щелчок, который мы привыкли ассоциировать с зеркальными камерами.

Размер сенсора камеры

Цена

меньше

больше

Производство сенсоров большего размера стоит намного дороже, и соответственно они обычно требуют более дорогих объективов. Это основная причина, по которой зеркальные камеры стоят настолько дороже компактных.

Вес и размер

меньше

больше

Большие сенсоры требуют намного более тяжёлых и больших камер и объективов, поскольку объектив должен захватить и доставить свет на большую площадь. Помимо снижения портативности, недостаток этого решения ещё и в том, что человек становится более заметен с большими камерой и объективом (то есть, откровенная съёмка людей затрудняется).


Глубина

резкости

меньше

больше

Визуальный шум

больше

меньше

Динамический диапазон

диапазон светотени между абсолютно чёрным и абсолютно белым

меньше

больше

Преимущества компактных камер

Экран как видоискатель (хотя большинство современных зеркальных камер тоже на это способны)

Большой набор творческих режимов

Нет движущихся частей зеркала/затвора, которые могут отказать после 10-100 тысяч снимков

Преимущества зеркальных камер

Быстрый автофокус

Намного меньшая задержка срабатывания затвора (интервал между нажатием кнопки и началом экспозиции)

Большая скорость серийной съёмки

Съёмка в RAW (хотя большинство топ-моделей компактных камер тоже это позволяют)

Возможность делать выдержки длиннее, чем 15-30 секунд (в ручном режиме)

Полный контроль над экспозицией

Возможность использования внешней вспышки (но и у многих топ-моделей компактных камер она есть)

Ручной контроль фокусного расстояния (вращением кольца на объективе, в отличие от нажатия на кнопку)

Большой диапазон светочувствительности ISO

Возможность заменить только камеру, сохранив все объективы

Однако большинство этих отличий следуют из того факта, что зеркальные камеры стоят намного дороже компактных, и не являются принципиальными качествами каждого типа. Если потратить достаточно много на топ-модель компактной камеры, у неё может оказаться достаточно много возможностей, обычно присущих зеркальным камерам.

Итоги сравнения компактных и зеркальных камер

Предпочтение того или иного типа камеры в действительности сводится к гибкости и потенциально более высокому качеству изображения в противовес портативности и простоте. Этот выбор зачастую зависит не только от конкретного человека, но и от того, что лучше для заданных условий съёмки и планируемого использования снимка.

Компактные камеры намного меньше, легче, менее дороги и менее заметны, однако зеркальные камеры позволяют получить меньшую глубину резкости, больший набор стилей съёмки и потенциально более высокое качество изображения. Компактные камеры, вероятно, намного лучше подходят для обучения фотографии, поскольку они меньше стоят, упрощают процесс съёмки и являются неплохим универсальным решением для многих видов съёмки без лишних сложностей. Зеркальные камеры гораздо лучше подходят для специального применения, а также когда вес и размер не имеют значения.

Невзирая на расходы, многие предпочитают иметь оба типа камер. Таким образом, они могут прихватить с собой компактную камеру на вечеринки и долгие прогулки, однако иметь в запасе зеркальную камеру на случай, когда придётся снимать в помещениях при слабой освещённости, или когда они собираются заниматься исключительно съёмкой (например, пейзажей или событий).

Контрольные вопросы:

Опишите принцип действия цифровой фотокамеры; Опишите устройство цифровой фотокамеры; Кратко опишите характеристики устройств цифровой фотокамеры; Правила эксплуатации фотокамеры; Настройка и подключение цифровой фотокамеры. Краткая характеристика компактных и зеркальных цифровых фотокамер.

Практическое занятие:

Выполнить фотосъемку, подключить к ПК, отредактировать фото в графическом редакторе.

Список литературы:

«Всё о компьютере»/ .- М.: АСТ»,2003ю-319с. «Информатика и информационные технологии ». Учебник для 10-11 классов/ .- М.:БИНОМ. Лаборатория знаний, с.

1. http://ru. wikipedia. org/wiki/Цифровой_фотоаппарат- описывается устройство цифрового фотоаппарата

2. http://school-collection. *****/catalog/search/- единая коллекция цифровых образовательных ресурсов